
Automating Data
Transformations
Enable Your Organization
to Solve the Largest
Bottleneck in Analytics

Satish Jayanthi &
Armon Petrossian

REPORT

Compliments of

https://coalesce.io

Satish Jayanthi and Armon Petrossian

Automating Data
Transformations

Enable Your Organization to Solve
the Largest Bottleneck in Analytics

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-14756-3

[LSI]

Automating Data Transformations
by Satish Jayanthi and Armon Petrossian

Copyright © 2023 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol,
CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Aaron Black
Development Editor: Virginia Wilson
Production Editor: Elizabeth Faerm
Copyeditor: nSight, Inc.

Proofreader: Elizabeth Faerm
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

April 2023: First Edition

Revision History for the First Edition
2023-04-25: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Automating Data
Transformations, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the authors and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Coalesce. See our state‐
ment of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. v

1. Today’s Modern Data Stack. 1
What Is the MDS? 2
Managing Data as a Product (DaaP) 2
Basic Terms and Concepts in the MDS 5
Automation in the MDS 10
Summary 11

2. A Renaissance in Data Transformation . 13
Why Data Transformations Matter 13
Data Transformation: Existing Solutions 15
Data Transformations: Finding the Golden Middle 19
Summary 21

3. Delivering Value with Data Transformations Through Automation. . 23
Principles of Data Value 23
Optimizing the Transformation Layer 26
Culture Shift 31
Summary 34

4. Summary and Further Reading. 37

iii

Preface

Many have heard the term data velocity, popularized by Oscar Here‐
ncia as a part of his five V’s of data: volume, velocity, variety, verac‐
ity, and value. For the past two decades, the first four V’s have grown
exponentially, but what about the most important—value? Data
transformation exists to deliver value and drive tangible improve‐
ments in business outcomes. While many organizations have built
data warehouses and lakes, growing the volume of their informa‐
tion, how many have seen their data’s value grow proportionally?

Today, integrating data into business operations is table stakes.
Winning organizations will have the most performant and scalable
architectures, prioritize the value of their outputs, and place the
greatest emphasis on results. We’ve seen this pattern in other opera‐
tional groups: engineering, sales, and marketing, to name a few.
From workplace wikis to a slew of Slack apps, automation and
tooling drive process improvement, which multiplies the value-add
of passionate, curious employees—this is the premise of the modern
data stack (MDS).

The MDS is the practitioner’s toolbelt. Under its umbrella are prod‐
ucts for data ingestion, storage, transformation, analytics, and gov‐
ernance. These solutions enable data teams to be lean and efficient:
only a few years ago most were built from scratch, limiting robust
data analysis to organizations with a fleet of data engineers and
architects. As a result, those who leverage the MDS are capable of
delivering more value at a more rapid pace.

Though we’ve seen much innovation in the MDS, one category
has lagged behind: data transformation. In our report, we’ll
walk through the value-add of the MDS and dive deep into

v

https://oreil.ly/8AFux
https://oreil.ly/8AFux

transformation: its origins, the current state, and how we see it
evolving. When we say transformation, we’re referring to down‐
stream data processing—the kind taking place in data warehouses.
We’ll discuss common approaches and demonstrate how present
solutions create an analytics bottleneck. Finally, we’ll present our
solution to automating the transformation problem—a hybrid
framework combined with data architecture as a service (DAaaS)
for consistent, distributed development of data warehouses at scale.
While data processing has come a long way, there’s still some dis‐
tance to scalable, accessible transformation tooling for data teams of
any size.

What You Will Learn
From this report, you’ll gain:

• A conceptual understanding of the MDS•
• Context on where current tooling shines and where it falls short•
• A vision for the future of data transformation: how we see•

transformation tooling evolving
• A framework for automating the transformation layer•
• A path to a scalable, robust data system that creates business•

value

Who This Report Is For
Our intention is to deliver value to data stakeholders: directors of
analytics, data leaders, and CDOs/CTOs. That being said, we feel
that a diverse group of data and product practitioners will benefit
from this report. A successful tech stack takes a village—not just the
data team. The DevOps, infrastructure, and product teams are all
working to pull data initiatives forward, ideally from the same end
of the rope. Here’s a brief overview of what various groups might
gain from our discussion:

• Analytics and data leaders will learn more about the MDS and•
current industry trends. This will improve decision making and
provide relevant context on services, frameworks, and build/buy
decisions in the data space.

vi | Preface

https://oreil.ly/0cX4B

• Data/analytics engineers will gain a better understanding of why•
a particular technology makes sense in the context of their
organization. Pondering high-level decisions can be a good
exercise for individual contributors and a window into strate‐
gic planning. We challenge our readers in this group to think
critically about their own infrastructure and how it fits into the
MDS.

• DevOps/infrastructure engineers are often some of the closest•
partners with the data team. Because of the tight connection
between cloud services and the MDS, these engineers are fre‐
quently deploying infrastructure at the behest of data stakehold‐
ers. Understanding the MDS can lead to empathy for, and
insight into, the processes of data teams.

• Data architects are experts in the patterns and architecture of•
our data. While they know best how to structure data systems,
their design choices rely heavily on downstream users (data and
product teams). From this report, data architects will be enabled
to make informed decisions and consider the perspective of
their partners on the data team.

If you come from another background, whether that be in engineer‐
ing, product management, or the C-suite, we feel you carry a tre‐
mendous amount of power in enabling a data-driven culture. Data
is produced and consumed primarily for product and business: you
are the solution to the difficult problems of democratizing data and
extracting its value.

Why We Wrote This
Our goal is to provide background on the evolution of the MDS and
give context to the current renaissance in data transformation. We
hope to present you with today’s popular solutions and our critiques
of their functionality, providing a window into why current data
transformation methods must evolve. Above all, we hope to convey
an understanding of how to implement a robust, bespoke solution
that delivers actionable data to your team.

To support our hypotheses, we synthesized information from a
number of presentations, academic papers, blog posts, and websites.
Nonetheless, many of the ideas expressed in our report are relatively

Preface | vii

new. As such, the source material is rapidly evolving and subject
to change.

Lastly, while we write as the CEO and CTO of Coalesce, we strive to
maintain neutrality and provide you with an objective lens into the
evolution of the MDS. We sincerely hope to see our ideas challenged
and look forward to the resulting discussion.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has
provided technology and business training,
knowledge, and insight to help companies
succeed.

Our unique network of experts and innovators share their knowl‐
edge and expertise through books, articles, and our online learning
platform. O’Reilly’s online learning platform gives you on-demand
access to live training courses, in-depth learning paths, interactive
coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit
https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this report to
the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Email bookquestions@oreilly.com to comment or ask technical ques‐
tions about this report. For news and information about our books
and courses, visit https://oreilly.com.

viii | Preface

https://oreilly.com
https://oreilly.com
mailto:bookquestions@oreilly.com
https://oreilly.com

CHAPTER 1

Today’s Modern Data Stack

Quite often, data teams develop a myopic focus on the pursuit of
the “perfect” process. While optimization is important, it’s easy to
overlook why companies have sunk millions into data operations.
Drawn to the attractiveness of real-time data or the hype of machine
learning (ML), AI, and cutting-edge techniques, many seek overly
complex solutions when value can be derived from much simpler
processes.

The goal of the modern data stack (MDS) is to simplify and
democratize access to insight that can enable any organization to
improve decision making, delivering value to the business. Working
backward to achieve our desired outcome, the tools that support a
product-led data team must:

• Be simple to implement and easy to understand (democratize•
access to data)

• Scale with the growth of the company, both in head count and•
data maturity

• Limit technical debt and vendor lock-in•

In this chapter, we’ll provide a brief overview of the MDS and
walk through basic concepts before diving into the creation of a
successful data framework. Afterward, we’ll discuss the importance
of automation and what data transformation currently lacks.

1

What Is the MDS?
The MDS is a term pioneered by Fivetran to describe the solutions
that comprise an organization’s system for capturing, enriching,
and sharing data. We’ve seen tremendous advancement in data pro‐
cesses—only a few years ago, every element of data ingestion and
transformation had to be built from scratch or adapted from an
open source library.

In the early 2010s, we saw an explosion of services that provided
off-the-shelf functionality for data integration (Fivetran, Stitch),
cloud data warehousing (BigQuery, Amazon Redshift), transforma‐
tion (dbt Labs, Matillion), and analytics (Tableau, Looker). Innova‐
tion has continued with the maturation of the data warehouse: the
separation of storage/compute and rise of serverless architecture.
We now have access to mature, cloud native technologies for data
warehouses and operational analytics, with a multitude of tools
available at every step of the way. While this has been a boon for
productivity in storage, compute, and ingestion, transformation and
metadata have lagged behind.

In this chapter, we’ll dive into the individual components of the
MDS and walk through a framework for building the right data
stack. First, it’s necessary to consider how we think about data.

Managing Data as a Product (DaaP)
Traditionally, data has been separate from product: analytics leaders
report directly to the CTO or another executive. Under this struc‐
ture, the data team is isolated. While analysts might be embedded in
other product groups, development of infrastructure and initiatives
lacks a shared understanding of the business. Frequently, this can
lead to silos, specifically between the operational units of a business
and the engineering teams.

As one might expect, this structure can result in data that lacks
context, even from the best-intentioned engineers. Centralized data
ownership can result in obfuscated requirements from product
teams. For example, often a single individual will be responsible
for data directives, from the top down. It’s quite easy for these teams
to focus on outputs rather than outcomes. This diverges from our
mandate of value creation: how can engineers contribute when they
are isolated from the business?

2 | Chapter 1: Today’s Modern Data Stack

The solution? Manage data as you would a product. While it might
not be feasible to hire a data product manager, there are a number
of best practices that can bring a team closer to the product mindset
and more focused on the data “consumer:” business users. First
proposed by Zhamak Dehghani in her book, Data Mesh (O’Reilly),
the DaaP approach revolves around a decentralized framework that
includes the following attributes:

Data services as code
Data and query modeling immediately jump to mind, though
data teams may also construct data discovery, observability, and
product interfaces as APIs to programmatically share informa‐
tion. Codifying data practices can occur at every stage in the
MDS, from engineering to analytics/science.

Data microservices
There has been a movement toward microservices in software
development, and for good reason. While data teams may
necessitate a monolithic element more than other software
teams, domain ownership of data is crucial. Those closest are
best qualified to understand how and when to leverage ana‐
lytical data. Microservices bring distributed architecture and
decentralized governance to the data space.

Outcome-oriented teams
While activity-oriented teams are effective, they do not effec‐
tively scale what matters most: delivering insight built on qual‐
ity and trustworthy data. Outcome-oriented teams, by contrast,
are constructed to deliver business value. The tools data teams
leverage must fit this outcome-oriented framework.

Extensive support for metadata
Metadata is the foundation of trust in, as well as understand‐
ing and democratization of, data—its importance cannot be
overstated. Without accurate documentation, lineage, and gov‐
ernance, the amount of energy spent on triaging issues and
answering questions will slowly eclipse the amount contributed
to finding insight.

The ultimate goal of a product-first mindset is to deliver value. In
the context of data, that means organizing resources, services, and
talent in a way that improves the quality of insight derived from
data sources.

Managing Data as a Product (DaaP) | 3

https://learning.oreilly.com/library/view/data-mesh/9781492092384
https://oreil.ly/18N3E

Of course, a shift from activity- to outcome-oriented teams requires
new processes. Data tools and techniques must support cross-
disciplinary users, from technical experts to novices, and should
support a self-service analytics framework. That is, they should
enable business users to access data and democratize information
across an organization. The following are some characteristics for a
new generation of product-led data initiatives:

Flexible
Data tooling must be malleable. Without flexibility, many will
resort to hacky solutions that skirt best practices or opt for
building their own solutions.

Shallow learning curve
As solutions mature, the barrier to entry must fall. While
some technical proficiency will always be necessary, building
outcome-oriented teams requires every member to be able
to triage problems and implement solutions. Complex, code-
first products limit collaboration to only the most techni‐
cally advanced users and impose barriers to development and
progress.

User-friendly
While the days of the command line are mostly over, some hang
on to code-only solutions. Self-service tooling that democratizes
access to information requires an element of user-friendliness.
While this doesn’t exclude a coding element, it does imply that
intuitive graphical user interfaces (GUIs) should be present.

Metadata-first
Like other areas of product, data must be well-documented.
Unlike those areas, however, documentation, governance, and
lineage is an incredibly expensive task. For data to be valuable,
it must be discoverable, understandable, and engaging across all
teams in a business. The next generation of data platforms must
put metadata first to unlock value.

Version-controlled
For data to be managed as a product, it must be built with
software best practices. Tooling, regardless of code volume,
should be version-controlled, and data teams should iterate to
construct robust, reliable pipelines, business intelligence (BI),
and models. Version control enables collaboration at scale.

4 | Chapter 1: Today’s Modern Data Stack

As the market is flooded with new customers (data teams), solutions
must enable a DaaP mindset without the need to build and scale
full data engineering, analytics, and science teams. These products
will replace in-house solutions and enable drastic productivity gains,
further lowering the barrier to entry in analytics, science, and ML,
and raising the bar for the average company to compete.

Basic Terms and Concepts in the MDS
The core areas of the MDS are ingestion, storage, transformation,
and analytics. We’ll break down each to understand more about how
the individual components of the MDS have shaped its trajectory.

Ingestion
Data ingestion refers to the process of extracting and loading data,
the first two steps in an ELT (extract, load, transform) architecture.
This means that ingestion is the first step to building a data stack.
Like the foundation of a house, a rock-solid ingestion framework is
essential to the stability of subsequent bricks in the construction of a
data warehouse.

Data ingestion solutions are tailored to the problems they solve:
where does data originate, and where is it being written? Today, a
number of ingestion tools offer pre-built connectors and abstract
away the many headaches of custom pipelines. Fivetran is the cur‐
rent market leader, while upstarts like Airbyte and Meltano offer an
open-source alternative.

What does this mean for the modern data practitioner? Data inges‐
tion is a developed space with a number of great options. It currently
allows a data team to go from 0 to 1 in hours/days instead of weeks/
months. Still, there is a need for technical prowess with hard-to-find
datasets.

Storage
Data storage is perhaps one of the most mature aspects of the
MDS. Products like Snowflake, Redshift, and BigQuery have inno‐
vated and helped to spur competition in the online analytical pro‐
cessing (OLAP) space. Modern data warehouses are optimized for
analytic processes and can scale to handle loads that older platforms

Basic Terms and Concepts in the MDS | 5

(PostgreSQL, MySQL) simply can’t match, thanks to parallel com‐
puting and column-oriented architecture.

When these products first emerged, storage and compute were bun‐
dled. Thus, many users found their usage limited by the constraints
of the service: they had either plenty of storage but hit analytical
limits, or analytical bandwidth but found themselves out of storage.
Increasing the availability of both, however, required a tremendous
price increase.

Today, storage and compute can be completely separate. The change
(and competition) adds much-needed flexibility in data warehouse
cost structure. Even the concept of server maintenance has been
abstracted away—virtually no infrastructure management is neces‐
sary with products like Azure, Redshift Serverless, BigQuery, or
Snowflake.

With these changes, many are opting for a data lake architecture,
where data is first staged in Amazon Simple Storage Service (Ama‐
zon S3) or Google Cloud Storage (GCS), then loaded and trans‐
formed in a warehouse mentioned earlier. This approach allows
for greater breadth of storage with nice implications for disaster
recovery.

What does this mean for the modern data practitioner? Choosing
the right platform will always be a difficult decision, but great
options like BigQuery, Redshift, and Snowflake are ubiquitous.
These are poster children for the MDS: they remove complexity
and DevOps from the equation and allow data teams to focus on
what matters.

Transformation
Data transformation is the manipulation and enrichment of data to
improve access, storage, and analysis. This most frequently occurs
on data that has already been structured and stored in a data ware‐
house. Hence, transformation is accessible to many via SQL and
Python. For this reason, we won’t consider upstream frameworks,
like PySpark, Dask, and Scala, which are limited to implementa‐
tion by data and software engineers. While these are important
tools, their highly technical nature makes them difficult to democ‐
ratize. As data volume grows, so does the importance of a solid
transformation layer—refining and revealing the most pertinent
information to analysts, stakeholders, and data scientists.

6 | Chapter 1: Today’s Modern Data Stack

Still, transformation is one of the most nascent aspects of the MDS.
While dbt was the first in transformation to appropriate software
engineering best practices to analytics, many are still operating on
some combination of Apache Airflow for orchestration plus dbt
Core for execution. While this combination works, it is very techni‐
cally demanding and does not scale well. Alternatives, like Matillion,
are more focused on a GUI, which, while adding simplicity, removes
necessary customization and locks users into predefined routines.

Transformation is due for an overhaul. We feel that transformation
lacks a metadata-driven element that operates on the column level
or, as we say at Coalesce, is column-aware. Furthermore, a more
cohesive combination of GUI and code is necessary to include every
member of a data team, while allowing the more technically-minded
to fine-tune models to their needs. Once this transformation pattern
is established, we feel data teams will be prepared to leverage a
DAaaS, introduced in Chapter 3, to automate the transformation
layer and provide value at scale.

What does this mean for the modern data practitioner? There
currently exists a number of established products that allow data
teams to transform integrated data. What they lack, however, is
the automation of transformation processes: a metadata-driven,
column-aware architecture that combines GUI/code and maximizes
code reusability. We’ll touch on this more throughout the report.

Analytics
When we say “analytics,” we’re broadly referring to the process of
using SQL and GUI platforms to generate visualizations, reports,
and insight. Data analytics and BI are separate in many product
organizations, but we’ll just call them “analytics” for simplicity’s
sake.

Data analysis has a highly human component and is one of the most
challenging aspects of deriving value from data—from an entire
data lake, an analyst, scientist, or engineer has to think critically
to choose the correct data for the task. The upside: improving effi‐
ciency in business and product with massive payoff. The downside:
potential misinformation and the creation of data silos—negative
returns on investment.

BI is another part of the MDS that has been highly refined. Services
like Tableau and Looker have been under development for decades

Basic Terms and Concepts in the MDS | 7

(Tableau being released in 2003). While newcomers like Metabase,
Apache Superset, Sigma, and ThoughtSpot are challenging the status
quo and introducing intuitive new ways of presenting data (at a
dramatically lower cost), there are well-established leaders who will
continue to serve the majority of the market.

However, the data exploration part of analytics is undergoing a
transformation of its own. There are entire websites dedicated to
finding the best hosted notebook tool—while a few leaders stand
out (Hex, Deepnote), the field is wide open. Hosted notebooks
increase efficiency of data science/analytics teams by integrating
SQL, Python, and R into the already popular Jupyter Notebook
format.

What does this mean for the modern data practitioner? There are a
variety of choices in the data analytics space, but some combination
of BI plus an exploratory data science/analytics (EDA) platform will
be a good fit for most organizations. Many BI products are mature
and expensive, but newcomers are looking to disrupt that trend.
Newer EDA tooling might lead to a shift in how analytics/science
teams operate.

Governance
Data governance is inherently broad, but the umbrella term refers to
all under data security, privacy, accuracy, availability, and usability.
Data governance carries many benefits but is often overlooked or
delayed due to the (seemingly) high cost of implementation. In real‐
ity, sound data governance principles will pay dividends far beyond
the cost of investment. Three of the most important aspects of data
governance are cataloging, observability, and lineage:

Cataloging
Describes the data itself: column names, enum values, and con‐
text. It’s the documentation that allows an outside viewer to
understand your data without the years of experience working
in it. Many transformation platforms have catalog functional‐
ity—Coalesce, dbt, Google Dataform, etc. Still, dedicated frame‐
works for metadata tracking, like Amundsen, are also popular.

8 | Chapter 1: Today’s Modern Data Stack

https://oreil.ly/mbOh7

Observability
Makes sure that data is reliable and as expected. With more data
than ever, how do you know there aren’t silent errors in your
pipelines? Data observability solutions fit this niche. Databand,
Datafold, and Monte Carlo all provide observability solutions.

Lineage
Describes the path data took, from ingestion to visualization.
Many popular tools contain table-level lineage in the form of
a directed acyclic graph (DAG) as built-in functionality (see
Figure 1-1).

Figure 1-1. An example of table-level data lineage in transformation

What does this mean for the modern data practitioner? Data gover‐
nance is a far-from-developed part of the MDS. It is a natural fit
for part of the transformation step—it’s efficient to document new
tables/data at the source when they’re created. Unfortunately, not all
data tooling provides column-level lineage, replete metadata track‐
ing, and automation of data governance. We see these as emergent
trends in the transformation layer.

Considerations When Creating an MDS
While we’ve provided a brief overview of each phase of the MDS,
we’ve yet to dig in to how you can apply this knowledge to build
your own performant data system. As we’ve suggested, software
choices can be tricky. Aside from the difficulty in obtaining accu‐
rate information, biases, dogma, and bureaucracy can weigh on
decision makers, company-wide.

Rather than thinking from first principles to address the problems
that exist and potential solutions, many teams will opt for solutions
that are the cheapest, most popular, or most familiar. These are
common pitfalls that will lead to suboptimal solutions. Instead, we
feel teams should prioritize:

Basic Terms and Concepts in the MDS | 9

https://oreil.ly/ybqVy

Completing the objective (solving the problem)
Does the solution actually solve the objective? Every team
is different—just because a solution is popular or ubiquitous
doesn’t mean your team needs it.

Considering the total cost of labor in decisions
Rather than balking at a steep asking price for a product
(though some skepticism is necessary), consider if the product
will result in less labor. If possible, attempt to quantify the
time saved. Labor is often the greatest expense for a technol‐
ogy team. This is a multidimensional calculation: we need to
consider the technical proficiency necessary for a product, the
amount of time it will save, and the number of employees
required to scale the solution. Tools that win on all three fronts
have the potential to drastically reduce cost and represent huge
wins for the organization.

Addressing technical debt/the scalability of various solutions
Does implementing the free solution create a mountain of tech
debt that will need to be addressed? Will a greater up-front cost
result in long-term savings? Only you can answer these ques‐
tions, but a long-term approach can have exponential payoff.

Automation in the MDS
From our discussion, it should be clear that some aspects of the
MDS are more developed than others. There has been a trend in
data processing toward automation: the abstraction of administra‐
tive tasks and reduction of operational overhead, which allow data
teams to focus on precisely what matters.

For the MDS to deliver what it promises, automation is key. Thus,
to address what’s missing in the MDS today you need only compare
progress in automation across categories. For example, take data
ingestion. While a more constrained problem (taking data from
a source and moving it to a target is narrow in scope), the data
ingestion problem has been nearly commoditized: you can now find
a number of extremely polished products that “just work.”

By contrast, transformation has not yet reached this stage. While the
process of transforming data has already undergone a renaissance,
it’s due for another. We’ve seen a plateau in the progress of transfor‐
mation tooling as many companies work to adopt existing solutions.

10 | Chapter 1: Today’s Modern Data Stack

While current solutions are great advancements, each lacks one
or more of the components we highlighted as key to truly automat‐
ing data transformation. A new wave of technologies will complete
automation in the MDS by eliminating this current bottleneck.

Summary
Using the guiding principle that data should serve to create value
and generate tangible business outcomes, the DaaP framework is a
way to think about how your tools of choice should function.

By providing an overview of the MDS as it exists today, we’ve high‐
lighted the strengths and weaknesses of current solutions. Using
history as a guide, it is evident that a second renaissance in data
processing is here. In this iteration pain points and bottlenecks in
data transformation are being overhauled, and data governance is
making its way downstream—originating at the column level in the
transformation stage.

In Chapter 2, we’ll dive into the specifics of data transforma‐
tion—examining the pros and cons of transformation frameworks,
comparing code and no-code approaches, and ultimately pre‐
senting what we like to call the “golden middle” of transforma‐
tion: a solution that provides just the right balance of flexibility
and consistency.

Summary | 11

CHAPTER 2

A Renaissance
in Data Transformation

In this chapter, we’ll expand on the transformation layer. We will
provide a brief overview of the importance of the transformation,
discuss the importance of ETL/ELT, and jump into existing solu‐
tions. We’ll then present the benefits and challenges these solutions
pose, framing each as code- or GUI-first. Taking the best of both
worlds, we’ll present a solution that finds the “golden middle” for
a flexible, yet user-friendly, experience. This golden middle of data
transformation represents the second revolution in data processing
and the first true automation of the transformation layer. Finally,
we’ll provide direct examples of how you can use this framework to
further analytics and engineering efforts on your team.

Why Data Transformations Matter
With the growing volume and variety of data, it becomes the task
of a robust transformation framework to concisely filter, aggregate,
and present findings in a manner that’s easily understandable. Data
transformation is essential to extract (pun intended) value from all
this information.

For this reason, it’s essential to implement a framework that pro‐
vides consistent outputs with as little overhead as possible. Every
member of the data team should be able to contribute, not just
those with technical backgrounds. Furthermore, this solution must
efficiently scale to handle both tremendous quantities of data and an

13

ever-expanding domain (schemas, tables, views) within any number
of data warehouses. Additionally, the scope will be downstream
from big data processing—at the warehouse layer, where most work
is done in SQL.

In Chapter 3, we’ll discuss existing solutions in the transformation
space, including where they shine and why they fall short for many.
From these shortcomings, we’ll present a hybrid option that suits
the needs of most data teams, formalizing our vision for a transfor‐
mation engine of the future.

ETL Versus ELT
Two concepts central to data transformation are ETL (extract,
transform, load) and ELT (extract, load, transform). The first serves
as the origin of data transformation, dating back to the first days of
databases themselves, while the second is a more recent rendition
of data processing:

ETL
In the early years, data warehouses looked very different. For a
company to have a database, it needed to have a server. As long
as that server was running, the company could host a database
like PostgreSQL or MySQL. Hence, all but the largest teams
were constrained by the costliness of server maintenance and
the difficulty of physically upgrading components.

It’s easy to see how analytics teams might be limited by these
processes in the early days. This is how ETL originated: data
was first extracted, then transformed to keep what was truly
important, and finally loaded into the target (see Figure 2-1).

Figure 2-1. The traditional ETL process

Being resource-constrained by the cost of managing and
upgrading on-prem systems, data had to be carefully curated
before taking up space on-site. Hence, ETL is a legacy trans‐
formation option that has been around for the better part
of 30 years.

14 | Chapter 2: A Renaissance in Data Transformation

ELT
It wasn’t until the mid-2000s and early 2010s that cloud
technology began to gain traction. With the introduction of
autoscaling compute and storage, it became easier to manage
data resources.

In the mid- to late 2010s, we saw tremendous competition in
the cloud computing space, contributing to a sharp decline in
cost. Business teams could tailor data warehouses and cloud
storage precisely to their requirements and cost tolerance at the
click of a button.

In recent years, we’ve seen the proliferation of the data lake
(enabling Extract and Load processes to precede Transforma‐
tion). Data lakes are built around storing almost everything in
a low-cost, semistructured format (e.g., JSON or Parquet files),
using new technologies to analyze directly from the lake or
transform for a data warehouse (see Figure 2-2).

Figure 2-2. The ELT process

This unlocks incredible power in exploratory data analysis.
Now, many are facing the problem of too much data, spark‐
ing a heightened demand for data analytics, data science, and
ML engineering. The same is true for data engineering: never
before has the need to filter and transform data been so great.

Data Transformation: Existing Solutions
Now we’ll discuss data transformation approaches in the modern
data era. Note that many of these are still “new” in the sense
that they’re patterns that have been established in the last one to
three years. We do not consider legacy products, like Informatica or
Talend. Furthermore, we will narrow our focus to transformations

Data Transformation: Existing Solutions | 15

taking place within the data warehouse. While useful functionality
can live upstream—batch and stream processing with PySpark and
Dask, or other distributed transformation frameworks like Scala and
Java, etc.—it is necessarily limited to data/software engineers. To
revolutionize data transformation, we’ll narrow our focus to the data
warehouse, where SQL and Python make transformation accessible
to a much broader audience.

SQL Plus Orchestration Tooling
Much of data transformation is a bit of Python and a large amount
of SQL, orchestrated according to some order/hierarchy. Thus, the
most bare-bones and homegrown transformation method is to: 1)
write SQL; and 2) orchestrate it using Airflow or another platform.

Given that this is the foundation of many code-first modern data
frameworks, it seems like a simple enough approach: find an orches‐
trator and establish a pattern for referencing sources and targets
within SQL; use that orchestrator to generate a DAG and execute
code in order; and host that code in a version-controlled manner.

From personal experience, this gets out of hand quite quickly. We’ve
seen firsthand the havoc caused by such a system: changes to infra‐
structure can be incredibly hard to test and maintain, resulting in
frequent job failures that are notoriously hard to triage. The absence
of formal logs and tests result in vague errors that often take hours
or days to resolve.

Code-First
Many code-first open source frameworks for data transformations
have been created in the past few years. At their core these products
are transformation engines, providing the backbone for automating
a series of SQL manipulations while providing the infrastructure to
define macros, references, and metadata. Popular open source tools,
especially among small and midsize businesses and in the startup
ecosystem, include dbt and Airflow.

Code-first solutions enable reusability, easy versioning, and the
structure necessary for most data teams to stand up a robust trans‐
formation pipeline within a data warehouse. The catch? They are
extremely technical, with a steep learning curve. Most work will
be done entirely on the command line and in code editors. Many

16 | Chapter 2: A Renaissance in Data Transformation

readers will know—there’s quite a bit of manual work and often
arduous setup involved.

While one can often find a script or add-on package to automate
away some of the headache, the functionality of code-first solu‐
tions is quite limited. A team of engineers is necessary to manage
orchestration, continuous integration and continuous deployment
(CI/CD), and other essential functionality. Most code-first solutions
offer cloud-hosted alternatives that handle deployment and orches‐
tration, at a price, but these are often equally difficult to configure
and maintain.

While we have different beliefs about what a truly scalable, enter‐
prise data transformation solution should look like, we would be
remiss if we didn’t recognize the impact of creating open source
solutions in addressing the challenges of legacy data transforma‐
tion products. Code-first frameworks paved the way for future
advancement.

GUI-First
Matillion and similar products differ from dbt and align more
closely with the legacy products, like Talend or Informatica. Built
around a GUI, they’re tailored toward teams without a dedicated
engineering component or with limited technical resources.

The low-code approach is accessible to a broader range of organiza‐
tions, and the inclusion of scripting functionality means that there
are opportunities to tailor the experience to niche demands.

Often, the proprietary configuration can be synced via Git, and col‐
laborators can edit projects in real time, similar to many code-first
solutions. As these products have matured, they’ve introduced func‐
tionality similar to Fivetran for data ingestion along with monitor‐
ing functionality. Some have even stepped up to reduce complexity
for the custom API calls.

Most aim to be an all-in-one solution that provides a quick way
to enable several parts of the modern data stack. Unfortunately,
products that try to do too much often end up doing little well.

Perhaps the largest disadvantage of a GUI-first framework is the
lack of flexibility and customization. Many GUI-first products are
older and started as data integration platforms, not transforma‐
tion platforms. As a result, the UI is dated and functionality can

Data Transformation: Existing Solutions | 17

seem bizarre. The inflexibility introduced by a lack of code means
that replicating components and automating data transformation is
actually quite difficult, despite the implied promise of simplicity.

While they solve some of the headaches of a code-first implementa‐
tion and decrease the complexity of the solution, they often end up
requiring just as much time and bring less scalability to the table
(see Table 2-1).

Table 2-1. GUI versus code

Item GUI-first Code-first
Technical
proficiency

Low to medium High

Metadata
tracking

Absent in most, if not all, cases. Feasible, but often repetitive. For
example, tracking source and references in
dbt Core is an incredibly time-consuming
task and requires repeating large amounts
of code/text.

Flexibility Low—tends to concede flexibility
for user-friendliness.

High—can be customized to the heart’s
content, at a price: a high degree of
technical skill.

Vendor lock-in High—often notoriously difficult
to export/transfer.

Medium—while code-easier to export,
proprietary formats may exist and other
barriers may arise.

Cost to build/
maintain

Low—with a gentle learning
curve, GUI-first products can be
adopted and managed by a wider
audience, mitigating labor cost.

High—finding and retaining the skilled
human resources required to build and
maintain a code-first solution can be
burdensome.

Community
support

Low to medium—few GUI-first
solutions are open source,
and subsequently there are
few communities around these
products.

Medium—open sourced solutions tend
to have a wide body of community
support. Choosing popular products and
researching community adoption is always
wise if your organization is committed to
an open source solution.

Customer
support

High—given the lower
complexity, GUI-first products can
be more easily supported and
triaged. Vendors may even provide
suggestions on how to use the
product in the most efficient
manner possible.

Low/none—it will be extremely difficult
to troubleshoot errors arising from
custom, code-first solutions. In the case of
open source products, community support
will be the only option.

Ease of
configuration

High Low

18 | Chapter 2: A Renaissance in Data Transformation

Item GUI-first Code-first
Scalability Low—GUI-based tools usually

have trouble handling
transformations at scale.
There often isn’t a way
to programmatically generate
transformations, resulting in a
point-and-click nightmare.

Low—maintaining transformations,
metadata, linting, and CI/CD for a
pure code solution will soon become
a daunting task. The discipline required
to enforce uniformity and standards can
consume a large amount of valuable
engineering resources.

Column-aware
architecture

None (so far) None (so far)

Data Transformations: Finding the
Golden Middle
So far, we’ve explored the foundations of data transformation,
including homegrown SQL plus orchestration efforts, open source
(typically code-first) solutions, and GUI-first alternatives. Hopefully,
it’s evident that each of these alone is insufficient to address the
characteristics of tools we identified in Chapter 1: flexible, user-
friendly, metadata-first, and version-controlled with a shallow learn‐
ing curve. Materializing these characteristics in the transformation
layer, specifically, the ideal solution will have the following:

Transformations as code
The ability to define custom transformations, either through
Python or SQL, that can be templated and distributed across an
implementation.

GUI support
Products with a GUI are often more approachable than the
command line and help to democratize data transformations.
They allow technical and nontechnical members alike to con‐
tribute to data warehouse development.

Column-level metadata awareness
For data to be valuable, it must be discoverable, understand‐
able, and engaging across all teams in a business. Starting
with the finest grain possible—the column—enables maximum
data efficacy.

Data Transformations: Finding the Golden Middle | 19

End-to-end automation
A truly scalable tool will be one that automates all the repetitive
processes in transformation—from code generation to metadata
definition.

These are the features that are essential for automated data transfor‐
mation to work toward the goal of delivering the greatest amount of
value possible. Naturally, these elements combine the best of code-
and GUI-first, so a true solution must be either a hybrid approach or
one that finds the golden middle of data transformation.

Hybrid Approaches
A true hybrid transformation approach that balances the flexibility
of code with the gentle learning curve of GUI has yet to emerge
as mainstream in the data space. While hybrid products are not
for every team, they are a solution tailored to the majority of data
teams. While some users will require the raw flexibility of code
(and have the resources to maintain it), others will need the stark
simplicity of a GUI.

When evaluating a hybrid data transformation platform, here is
some key functionality to look for:

• GUI elements that allow technical and nontechnical users alike•
to build data pipelines quickly and simply.

• Code-first elements that enable programmatic generation of•
pipelines and in-kind widgets/modules without the need for
hundreds of clicks or individual components.

• Flexible in the sense that almost everything is customizable.•
• Rigid enough to enforce standardization in tracking and meta‐•

data management.
• Column-level lineage—we must track data movement at the•

column level to automate analytics documentation and simplify
the triaging of data-related issues.

• Automation of administrative tasks typically required by analyt‐•
ics/data engineers. In the case of code-first tools, this might be
declaring sources, pulling through metadata, and performing
any other repetitive task that “always has to happen.”

20 | Chapter 2: A Renaissance in Data Transformation

These features will result in accelerated development and scalabil‐
ity—for both code and metadata management. By automating away
tedious processes and ensuring that metadata is sourced at the
column level, data warehouse configurations will be well defined—
from sources to curated views—enabling rapid development of data
pipelines.

Summary
The falling cost and barriers to cloud computing have given rise to
a data landscape of the future. This landscape is much more friendly
to large-scale data processing and incentivizes a “store first, analyze
later” approach. As a result, data lake architectures have become the
norm for most product teams.

Many current data transformation solutions in the modern data
stack are insufficient for this advance. The most bare-bones
approach is unscalable and unstable. Code-first solutions isolate
nontechnical users and are equally difficult to scale. While GUI-first
is more user-friendly, rigidity makes it prone to time-consuming
manual processes, a lack of community support, and a number of
headaches in implementation and upkeep.

Thus, we believe the golden middle will revolutionize data trans‐
formation by providing a fully automated and scalable approach
to data transformation that takes the best of code- and GUI-first
products, combines them, and optimizes for modern data teams.
Hybrid transformation frameworks will address problems critical to
a majority of data teams.

Unfortunately, creating value with the MDS isn’t as simple as buying
a product. In Chapter 3, we’ll provide a framework for creating
business value from data and discuss how it’s the automation of the
transformation layer that opens the door to self-service analytics
and data democratization.

Summary | 21

CHAPTER 3

Delivering Value with
Data Transformations
Through Automation

Though there are numerous ways for data systems to create value,
each follows a core set of principles. A successful operation needs to
be built on simplicity, flexibility, user-friendliness, and a metadata-
first approach. A foundation in metadata is essential. Specifically,
metadata originating at the column level allows for the precise dis‐
semination of business context. While wikis and ad hoc questions
might work for startups, this quickly becomes untenable at large
enterprises.

More importantly, a metadata-based implementation enables a data
architecture as a service (DAaaS) approach. As we’ll present in the
following section, DAaaS leverages “data patterns” that can be used
to break down data silos, eliminate analytics bottlenecks, and auto‐
mate the many pain points that exist in the transformation layer
today.

Principles of Data Value
The concept of providing value with data is not new, though it has
grown in popularity and depth in the last few years. We feel data
value is best approached through the data mesh framework. When
viewed through this lens, it becomes apparent that a decentralized
approach will be transformative in the data space. Decentralization

23

of data skill, combined with a column-aware architecture and
automation in the transformation layer, will serve to deliver value
in the most efficient way possible.

Product-First
In Chapter 1 we introduced the concept of data as a product (DaaP),
in which valuable data is easily discovered, understood, trusted, and
explored. A product-first mindset means developing data resources
with the following characteristics in mind:

Discoverability
How do stakeholders know about that great summary table
an analyst built? How can you avoid duplicate queries that
return slightly different answers to the same question? Data dis‐
coverability reduces the friction to finding the data that already
exists and the work that has already been done. While metadata
collection is a prerequisite, dissemination of your team’s data
universe is key. Without the ability to educate users on what
exists in near real time (as assets are created), many efficiency
improvements will be overlooked! Be sure to evaluate the dis‐
coverability of your data as you invest in data governance and
transformation tooling.

Understanding
Establishing understandable data begins with the transformation
layer. Solutions that allow for column-level lineage are key as
they provide the greatest amount of context. Enforcing rigor
in data assets is essential, as it reduces the discipline required
to construct consistent outputs: in many data platforms, the
responsibility falls on one or a handful of individuals to police
code, ensuring that conventions are followed, or to construct
complicated CI/CD processes to lint and verify work.

Trust
Building trust in data is an arduous process. It requires a high
degree of consistency and a dedication to robust and accurate
pipelines. Failures, whether of data jobs or the ability to deliver
accurate reporting, will not soon be forgotten. This will under‐
mine even the best attempts to integrate a data-driven culture.

Using the modern data stack, trust is acquired through pro‐
duction systems built for uptime and consistency. A rigorous

24 | Chapter 3: Delivering Value with Data Transformations Through Automation

adherence to data as code and documented processes will help
to ensure services that inspire trust in the end user.

Exploration
Explorable data empowers stakeholders to quickly find answers
to their questions. Becoming comfortable with data systems will
enable them to generate new questions and ideas, unlocking the
true power of distributed data knowledge and kicking off the
virtuous cycle of the scientific method.

Data practitioners should seek to implement a framework that ena‐
bles many members of their team to create data systems that adhere
to the preceding four characteristics.

This starts with a column-first mindset.

Column-First
In recent years, data observability has become mainstream. At one
time it was incredibly complex, but now firms like Atlan, Monte
Carlo, and Datafold have helped data teams to better understand
lineage, comply with regulation, and even detect silent errors/unin‐
tended outputs without the need for DIY tracking systems or anom‐
aly detection services.

What drives data observability? Understanding is not possible
without scrutiny at the finest grain possible—the column level. By
recognizing how each column is transformed and where these col‐
umns go, a wealth of functionality abounds. Unfortunately, observ‐
ability and transformation have evolved separately in the MDS,
though the two are inexorably linked. While the aforementioned
tools work well, they’re separate from the source of data changes: the
transformation layer.

Additionally, current code- and GUI-first transformation solutions
are built at the table level. To understand columnar data, one has to
purchase, implement, and maintain a separate observability service.
This is inherently inefficient, as many of these operate via reverse
engineering that attempts to circumvent table-level shortcomings in
the transformation layer.

The current, circuitous approach is disjointed: every column in a
data warehouse is sourced from a raw table that’s created through
ingestion. From ingestion, these columns are transformed to the
tables and views used for decision making (see Figure 3-1).

Principles of Data Value | 25

Figure 3-1. Column-level lineage is the most visual benefit of a
column-aware architecture

Thus, if you track metadata at the column level, starting from your
entry point and interwoven with your transformation tool, it should
be possible to tie each column directly back to the source. It follows
that this should take place in the transformation layer, not a separate
solution that tries to back in to observability. The benefits of a
column-based architecture go far beyond metadata management:
the ability to craft and distribute the building blocks of data trans‐
formation at scale is made possible only through column awareness.

It’s our belief that the transformation platform that delivers the most
value will be one founded on a column-first approach, not only with
hybrid code and GUI implementation but also by being built on the
foundations of data transparency and observability. Value in data
transformation starts at the column level. At the finest grain possi‐
ble, you can leverage the true power of automated transformation,
enhancing the discoverability, understanding, trust, and exploration
of our datasets and delivering value with the MDS.

Optimizing the Transformation Layer
The concepts of data mesh and DAaaS/DaaP revolve around a
decentralized structure for data curation. The ultimate goal is to
enable every team to build relevant data infrastructure. It might
sound trivial for a small company, but this approach becomes
critical as the company grows.

26 | Chapter 3: Delivering Value with Data Transformations Through Automation

In an excellent talk at the 2022 Amplify product conference, Geoff
Coyer described how he supported over 700 monthly active users
with a data team of six. Perhaps more surprising is that his team still
finds time to progress on data science and engineering initiatives.
How is this possible? Enabling self-serve analytics. Though much
time and energy has been spent on developing “self-serve” tooling,
we feel current methods miss the mark. In this section, we’ll discuss
our approach to an accessible data framework.

Enabling Analytics at Scale
While self-service analytics and “data democratization” have been
some of the hottest data buzzwords of late, we feel this to be misgui‐
ded. While it is necessary to have a BI layer that enables nontechnical
stakeholders to explore data, this assumes a solid data foundation.
How can a CMO craft a compelling story when a marketing analyst
is waiting on support to implement an attribution framework? What
about a financial analyst who is held up by a transaction pipeline?
While self-service is indeed a powerful concept, the assumption is
that every arm of the business has access to adequate data resources,
which often isn’t the case.

To deliver value with transformation at scale, we must enable all
teams to build and maintain their own data infrastructure while still
working collaboratively with each other. Traditionally, this approach
has been incredibly messy and accelerated data siloing. This can be
avoided with a change in methodology—the adoption of DAaaS.

DAaaS
Consider two auto manufacturers. Company A operates under
a “custom-built” or tailor-made model: each component is hand-
crafted and unique, making the final product one of a kind. Com‐
pany B takes the opposite approach: manufacturing parts according
to exact specifications and with rigorous precision, then assembling
downstream to create the final products, all of which are nearly
identical.

Neither company is right or wrong, but their biggest differentiators
are scale and cost. While Company A might be able to produce
200–300 cars each year, increasing output will lead to lower quality
and inconsistency. Additionally, those 300 cars will come at quite the
price, since only the most skilled workers will be able to make them.

Optimizing the Transformation Layer | 27

https://oreil.ly/9W3HE

This model does not scale. This may be sustainable for a company
like Ferrari, but it will not work for one like Tesla.

At Company B, however, production can scale up or down to output
cars in the millions, as long as economics are maintained. Thanks to
the production process, Company B has two categories in produc‐
tion: architects/engineers who design parts and those in assembly
who implement them. The only prerequisite to assembly is domain
knowledge, which lowers the barrier to entry and lets Company B
allocate more talent to that task.

Data transformation is not an assembly line, and relational data is
neither Ferrari nor Tesla, but the analogy of a bespoke data solution
versus a scaled, consistent one is apt. The former will be tenable in
small software-as-service (SaaS) companies with cutting-edge prod‐
ucts, a passionate team of engineers, and about 25–50 employees.
Past that, inconsistency and cost will balloon. What we need, then, is
an approach that is:

• Consistent and rigorous in its outputs (i.e., data architecture,•
naming conventions, and implementations) across business
organizations.

• Scales indefinitely from a 50-person organization to a 50,000-•
person organization.

• Cost-effective in the headcount required to implement and•
maintain. Specifically, maintenance and migrations are often
overlooked.

DAaaS is the solution. DAaaS is an approach that involves technical
team members—typically, architects and engineers—creating devel‐
opment templates, or “patterns,” that can be implemented down‐
stream by almost anyone in an organization. DAaaS has a number of
benefits across all organizational sizes:

Removes bottlenecks (centralized data team)
This is accomplished thanks to a parallelized/asynchronous data
implementation.

Parallelized
Every team can work simultaneously to build its own,
slightly different infrastructure.

28 | Chapter 3: Delivering Value with Data Transformations Through Automation

Asynchronous
Data transformation often acts as a bottleneck to analysis.
Under DAaaS, the most skilled practitioners only need to
review implementations, not create them from scratch. This
enables asynchronous development of shared resources,
eliminating bottlenecks.

Adds context
Puts those who are closest to the business context in charge of
their data.

Breaks down silos
Multiple business arms are integrated to a larger data monolith:
a data microservice approach.

It’s easy to see how DAaaS fits into the data mesh approach to devel‐
opment: a centralized data team creates data patterns and builds the
foundations of a data warehouse, with column-level metadata on
foundational tables. This enables the following:

• Decentralized business users and subject matter experts (SMEs)•
to understand relational data and build derivative resources
without advanced technical skill

• Keeping ownership of data transformation in the hands of the•
SME (the relevant product/business group) and allowing those
with the most context to create data resources

• Removing the “gatekeeper” status from the centralized data•
team, freeing up time and resources to pursue larger projects

A solution that enables a DAaaS architecture will parallelize the
implementation of data systems, automate the hard parts of trans‐
formation, and enable a data-driven business at scale. In our opin‐
ion, a unified platform that allows architects and implementers to
operate in the same domain will be most efficient. A single platform
is important for cohesion and reduced friction, as well as process
improvement. Often, it’s those closest to a process who invent
improvements and optimizations.

Thus, our transformation solution should work to both enable
advanced technical members to show their true potential and
democratize pattern implementation to business users in a friendly
way. Learning data systems is a practice of trial and error—ask‐
ing managers about the context of a column, checking a query

Optimizing the Transformation Layer | 29

with peers, and verifying the correctness of an analysis. This plat‐
form should streamline this process by intertwining column-level
metadata and transformation to draw clear lineage between data
resources.

While one may separately purchase and maintain data tooling
(observability, metadata tracking, and transformation platforms),
this is both expensive and time-consuming. The complexities of
working with three separate vendors for enterprise-level software
should not be understated. Additionally, product dependencies and
integrations may be complex. We feel an all-in-one solution will be
the more straightforward and cost-effective approach.

Data Patterns
When we say “data patterns,” we’re referring to common patterns
in data modeling that we’ve seen throughout the years. Frequently,
these patterns are implemented in the transformation layer as SQL
or Python to produce a table that provides additional context or
insight. Take, for example, an SCD type 2 table. SCD stands for
slowly changing dimension. Type 2 indicates that a new row is cre‐
ated for each change to an existing record in the source table. This
is a common pattern for transactional tables that provide a “change
log” of the table contents.

Creating an SCD type 2 table is an exact science. An analytics or
data engineer will write SQL to transform source transactional data
into a summary table. However, it is a learned skill, with many
possibilities for error. The engineer must have a solid grasp on
window functions, cursors, and primary keys to ensure they accu‐
rately replicate the source data. Complexity compounds when data
is transformed incrementally. This means that implementing SCD
type 2 tables is often reserved for a centralized data team, which
can quickly bottleneck work and result in data teams working on
problems outside their area of expertise. Metadata tracking and
naming conventions are additional areas of potential error.

Data patterns are the solution and a byproduct of a DAaaS
approach. If data architects and engineers construct an SCD type
2 pattern, downstream users can implement corresponding tables
without having to worry about complexity or convention. Break‐
ing down common tables into patterns and building reusable “tem‐
plates” can dramatically accelerate data warehouse development
and reduce error—it’s the automation of the transformation layer.

30 | Chapter 3: Delivering Value with Data Transformations Through Automation

So if you sit on finance as a junior analyst and know you need
a change log of subscription status, you can implement an SCD2
pattern by merely picking a piece of pre-built code off the shelf and
selecting appropriate cursor columns. Then you can be confident
you’re getting the correct results and proceed with your analysis.

Other examples of common patterns in data warehousing and ana‐
lytics include hubs, satellites, and links in a data vault, as well as
the dimensions and facts in a star schema. Data-loading patterns
such as incremental loading using change data capture (CDC)
are also common, as are data transformation patterns such as de-
duplication, aggregation, and standardization.

Optimally, patterns are integrated in the same platform as transfor‐
mation, with visibility in their implementation. Then the junior
analyst can observe and learn about the patterns they’re implement‐
ing, should they choose.

Patterns leverage advanced technical talent to abstract away tricky
processing, incrementality, and materialization logic—democratiz‐
ing access to transformation and eliminating bottlenecks created by
centralized data teams. This is especially important for enterprise-
scale teams, where talent and domain knowledge are wildly varied.

Culture Shift
We’ve discussed data patterns as a method for parallelizing the
development of the transformation layer, eliminating the bottle‐
necks of a centralized data team. Distributing tasks according to
technical prowess will allow your team to deliver more value by
enabling the entire organization to contribute to developing data
infrastructure. Column-level metadata begets this process by pro‐
viding context at the finest grain possible. This reduces the likelihood
of data silos and swamps. Our assumption is that your organization
will adopt and thrive in this environment. For that to be true, how‐
ever, a culture shift is necessary.

Democratizing Data Transformation
The shift toward data democratization is one from activity-oriented
to outcome-oriented teams. Popularized by Martin Fowler, the idea
is that teams need to focus on outcomes, not activities. Our frame‐
work for automating data transformation is a new and radical

Culture Shift | 31

approach that starts from first principles of process design and
eliminates inefficiency.

The shift here is away from a monostructural manufacturing-line
type of assembly, where analysts and engineers alike are ultraspecial‐
ized. Instead, we embrace the liberalization of the data process, a
microservices approach where a junior analyst might realize they
need a piece of data and have the ability to implement it with only
a brief code review. Rather than struggling with a non-optimal GUI,
waiting for a ticket to be filled by the data team, or meeting with
a manager to walk through complex SQL, an automated transfor‐
mation layer will enable teams to create value almost immediately
through a top-down DAaaS approach. In theory, this sounds per‐
fect—in practice, it requires a shift in mindset.

Every member of the organization will need to think a bit more
critically to truly understand their data—both in context and how
to manipulate patterns to achieve a desired result. Only a few will
need to build patterns, but most will use them to access information.
All will need to think toward outcomes, not activities. For some, this
might be easy, but for many this will necessitate a shift in approach.
With recent advancements in artificial intelligence (AI) and gener‐
ative content, many—especially creative types—have become skep‐
tical of processes that automate away large swaths of work. We
expect similar pushback on the automation of the transformation
layer, especially from those who’ve made careers of the work being
automated. A common fear is that more automation means less
work to do, which can sound scary.

The truth about automation, repeated throughout history, is that
it does not eliminate work. It merely shifts the type of work we
do, often to something more challenging and enjoyable. If it now
takes three analysts to build infrastructure instead of ten, the other
seven will still have plenty to do—focusing on higher-level tasks like
implementing new patterns, optimizing design, and tackling new
creative problems that were previously consumed by manual process
and day-to-day operations.

In the same way that rote data engineering processes can be auto‐
mated and integrated into the transformation layer, this does not
result in fewer data engineers but ultimately more value creation
from the existing team, which drives business success and creates
more jobs in the long term. For example, take Fivetran’s automation

32 | Chapter 3: Delivering Value with Data Transformations Through Automation

of data ingestion: once a core responsibility of data engineers, the
ingestion problem has been largely solved, yet demand for data and
data teams has only increased exponentially. The same will be true
for the transformation layer.

Automation, then, is not about creating a smaller team, but rather
one that achieves at a higher standard. Getting more done begets
success and a larger team capable of achieving tremendous results.

Implementation
As we think about building discoverable, understandable, trustwor‐
thy, and explorable data systems, there are some common pitfalls
that can create undue work. We’ve discussed our ideal framework—
a DAaaS solution built around a hybrid transformation approach—
but every team’s data journey will differ. Following are some guiding
principles for your team to consider as you implement and scale
your data systems:

Simplicity in architecture design
The ideal data infrastructure is simple but robust. Good sys‐
tems should reduce complexity—they take time to implement
and maintain, but this trade-off is worth it for the gains in
productivity.

Reliable, scalable, maintainable
As espoused in the book Designing Data-Intensive Applications
by Martin Kleppmann (O’Reilly), functional systems are built
on reliability, scalability, and maintainability. In addition to
being simple, a system should:

• Work correctly, even under challenging conditions•
(reliable)

• Be able to handle growth in volume or complexity•
(scalable)

• Be easy to maintain and adaptable to new functionality•
(maintainable)

This ties to our discussion and promotion of cloud native, end-
to-end solutions. While many of these carry a high sticker price,
the management cost is much lower, the reliability of cloud
infrastructure is nearly unmatched, and a lot of maintenance is
abstracted away:

Culture Shift | 33

https://learning.oreilly.com/library/view/designing-data-intensive-applications/9781491903063

Total cost of ownership versus price
We briefly discussed how time and resource savings can quickly
compound, but it’s worth reiterating. When implementing a
solution, spend a good deal of resources considering the cost
not only to implement but also maintain that solution. This
should be broken down by time, labor, and the actual cost of
the product being implemented. The cost of changing a solution
must also be considered, as the only constant in software (and
especially in data) is change.

Alignment with stakeholders
While data is ideally treated as a product, data teams do not
operate independently from the rest of an organization. Fur‐
thermore, conflicts of interest and bureaucracy can muddy ini‐
tiatives and result in shifting priorities. Before embarking on
any project, ensuring stakeholder alignment is critical. Far too
often, we have seen well-intentioned work miss the mark due to
a lack of communication. While this is costly for an individual
contributor, it can be more consequential at the managerial
level. Be sure that projects are aligned to stakeholder goals and
the initiatives undertaken are in the interest of delivering value.

Summary
We’ve stepped beyond the modern data stack to examine what it
means to deliver value with data: from the importance of column
awareness to an entirely new method of infrastructure development
(DAaaS). The building blocks of these concepts are not new: break‐
ing down technical barriers and standardizing the design and distri‐
bution of infrastructure, asynchronous distributed work, and the
automation of rote processes have led to many advancements across
data and software—we feel it’s time these were brought to data
transformation.

Optimizing the modern data stack for value is not simply intelligent
software engineering but also a practice of social engineering. It
involves building a cohesive system of tools and components and
requires leadership and effective management according to proven
frameworks. To deliver value, data teams need to implement per‐
formant solutions and champion their company-wide adoption.
The modern data stack is built to solve the first, more technical,
problem, but only you can solve the second. We believe the future

34 | Chapter 3: Delivering Value with Data Transformations Through Automation

of data transformation will start with a column-aware DAaaS foun‐
dation, atop which confident data practitioners and leaders, like
yourselves, can champion systems of tremendous value and help
organizations win.

Summary | 35

CHAPTER 4

Summary and Further Reading

In our report, we sought to tie transformation to the act of cre‐
ating value from data. Underlying this daunting task is a set of
prerequisite organizational characteristics: thinking about “data as a
product” (a core tenet of data mesh); building a data-driven culture;
enabling DAaaS; and building data from a column-aware, metadata-
first framework.

While a number of guiding principles and prevailing philosophies
help the data practitioner in their journey, every situation is unique,
demanding a bespoke solution. It’s our hope that this report can
help your organization achieve efficiency and automation in trans‐
formation, unlocking the full value of the modern data stack and
providing a lens into the past and a vision for the future of data
transformation.

To further your understanding, we highly recommend the following
as further reading:

Data Mesh by Zhamak Dehghani (O’Reilly, 2022)
This book was revolutionary in its introduction to the DaaP
concept, and Zhamak Dehghani’s approach to a decentralized
data team of the future is applicable to most data teams. For
those looking to build out their organization or restructure,
Data Mesh is a must-read.

37

https://learning.oreilly.com/library/view/data-mesh/9781492092384

Data Pipelines Pocket Reference by James Densmore (O’Reilly, 2021)
A down-to-earth manual on how to solve common data prob‐
lems in the pipeline step, this text walks through pipelines—
from definition to implementation—with considerations for
maintenance, testing, and alerting. This text is highly recom‐
mended for readers as they build out their ETL systems.

The Data Warehouse Toolkit by Ralph Kimball and Margy Ross
(Third Edition, Wiley, 2013)

Penned by data warehousing legend Ralph Kimball, this book
is an exhaustive guide to dimensional modeling. Though the
book was first published in 1996, there have been a number
of revisions, and it remains one of the foremost texts on data
warehousing convention. We recommend interleaving Kimball’s
ideas with your own to account for how the data warehouse has
evolved.

Designing Data-Intensive Applications by Martin Kleppmann
(O’Reilly, 2017)

This is a practical and comprehensive guide to solving problems
in the data space. Martin Kleppmann provides various technol‐
ogies and the pros and cons of each, allowing the reader to
make logical, informed decisions about the technologies they
choose to implement.

Fundamentals of Data Engineering by Joe Reis and Matt Housley
(O’Reilly, 2022)

Covering the data engineering lifecycle from start to finish, Joe
Reis and Matt Housley map out best practices, technologies, and
undercurrents in the space. Their approach introduces princi‐
ples that have stood the test of time and encompass all relevant
technologies. Readers will walk away with an understanding of
how to apply data engineering patterns to real-world problems.

38 | Chapter 4: Summary and Further Reading

https://learning.oreilly.com/library/view/data-pipelines-pocket/9781492087823
https://www.wiley.com/en-us/The+Data+Warehouse+Toolkit:+The+Definitive+Guide+to+Dimensional+Modeling,+3rd+Edition-p-9781118530801
https://learning.oreilly.com/library/view/designing-data-intensive-applications/9781491903063
https://learning.oreilly.com/library/view/fundamentals-of-data/9781098108298

About the Authors
Satish Jayanthi is CTO and cofounder of Coalesce. Prior to that,
he was senior solutions architect at WhereScape, where he met his
cofounder, Armon.

Armon Petrossian is CEO and cofounder of Coalesce. Previously,
he was part of the founding team at WhereScape in North America,
where he served as national sales manager for almost a decade.

	Copyright
	Table of Contents
	Preface
	What You Will Learn
	Who This Report Is For
	Why We Wrote This
	O’Reilly Online Learning
	How to Contact Us

	Chapter 1. Today’s Modern Data Stack
	What Is the MDS?
	Managing Data as a Product (DaaP)
	Basic Terms and Concepts in the MDS
	Ingestion
	Storage
	Transformation
	Analytics
	Governance

	Automation in the MDS
	Summary

	Chapter 2. A Renaissance in Data Transformation
	Why Data Transformations Matter
	Data Transformation: Existing Solutions
	SQL Plus Orchestration Tooling
	Code-First
	GUI-First

	Data Transformations: Finding the Golden Middle
	Hybrid Approaches

	Summary

	Chapter 3. Delivering Value with Data Transformations Through Automation
	Principles of Data Value
	Product-First
	Column-First

	Optimizing the Transformation Layer
	Enabling Analytics at Scale
	DAaaS

	Culture Shift
	Democratizing Data Transformation
	Implementation

	Summary

	Chapter 4. Summary and Further Reading
	About the Authors

